Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Med (Berl) ; 101(12): 1587-1601, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819378

RESUMO

The SCN1A gene encodes the alpha subunit of a voltage-gated sodium channel (Nav1.1), which is essential for the function of inhibitory neurons in the brain. Mutations in this gene cause severe encephalopathies such as Dravet syndrome (DS). Upregulation of SCN1A expression by different approaches has demonstrated promising therapeutic effects in preclinical models of DS. Limiting the effect to inhibitory neurons may contribute to the restoration of brain homeostasis, increasing the safety and efficacy of the treatment. In this work, we have evaluated different approaches to obtain preferential expression of the full SCN1A cDNA (6 Kb) in GABAergic neurons, using high-capacity adenoviral vectors (HC-AdV). In order to favour infection of these cells, we considered ErbB4 as a surface target. Incorporation of the EGF-like domain from neuregulin 1 alpha (NRG1α) in the fiber of adenovirus capsid allowed preferential infection in cells lines expressing ErbB4. However, it had no impact on the infectivity of the vector in primary cultures or in vivo. For transcriptional control of transgene expression, we developed a regulatory sequence (DP3V) based on the Distal-less homolog enhancer (Dlx), the vesicular GABA transporter (VGAT) promoter, and a portion of the SCN1A gene. The hybrid DP3V promoter allowed preferential expression of transgenes in GABAergic neurons both in vitro and in vivo. A new HC-AdV expressing SCN1A under the control of this promoter showed improved survival and amelioration of the epileptic phenotype in a DS mouse model. These results increase the repertoire of gene therapy vectors for the treatment of DS and indicate a new avenue for the refinement of gene supplementation in this disease. KEY MESSAGES: Adenoviral vectors can deliver the SCN1A cDNA and are amenable for targeting. An adenoviral vector displaying an ErbB4 ligand in the capsid does not target GABAergic neurons. A hybrid promoter allows preferential expression of transgenes in GABAergic neurons. Preferential expression of SCN1A in GABAergic cells is therapeutic in a Dravet syndrome model.


Assuntos
Epilepsias Mioclônicas , Canal de Sódio Disparado por Voltagem NAV1.1 , Animais , Camundongos , Modelos Animais de Doenças , DNA Complementar , Epilepsias Mioclônicas/terapia , Epilepsias Mioclônicas/tratamento farmacológico , Neurônios GABAérgicos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Fenótipo
2.
J Clin Invest ; 133(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37192002

RESUMO

Dravet syndrome (DS), an intractable childhood epileptic encephalopathy with a high fatality rate, is typically caused by loss-of-function mutations in one allele of SCN1A, which encodes NaV1.1, a 250-kDa voltage-gated sodium channel. In contrast to other epilepsies, pharmaceutical treatment for DS is limited. Here, we demonstrate that viral vector-mediated delivery of a codon-modified SCN1A open reading frame into the brain improves DS comorbidities in juvenile and adolescent DS mice (Scn1aA1783V/WT). Notably, bilateral vector injections into the hippocampus and/or the thalamus of DS mice increased survival, reduced the occurrence of epileptic spikes, provided protection from thermally induced seizures, corrected background electrocorticographic activity and behavioral deficits, and restored hippocampal inhibition. Together, our results provide a proof of concept for the potential of SCN1A delivery as a therapeutic approach for infants and adolescents with DS-associated comorbidities.


Assuntos
Epilepsias Mioclônicas , Canal de Sódio Disparado por Voltagem NAV1.1 , Camundongos , Animais , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/terapia , Convulsões/genética , Convulsões/metabolismo , Hipocampo/metabolismo , Mutação
3.
Mol Ther Nucleic Acids ; 25: 585-602, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34589280

RESUMO

Dravet syndrome is a genetic encephalopathy characterized by severe epilepsy combined with motor, cognitive, and behavioral abnormalities. Current antiepileptic drugs achieve only partial control of seizures and provide little benefit on the patient's neurological development. In >80% of cases, the disease is caused by haploinsufficiency of the SCN1A gene, which encodes the alpha subunit of the Nav1.1 voltage-gated sodium channel. Novel therapies aim to restore SCN1A expression in order to address all disease manifestations. We provide evidence that a high-capacity adenoviral vector harboring the 6-kb SCN1A cDNA is feasible and able to express functional Nav1.1 in neurons. In vivo, the best biodistribution was observed after intracerebral injection in basal ganglia, cerebellum, and prefrontal cortex. SCN1A A1783V knockin mice received the vector at 5 weeks of age, when most neurological alterations were present. Animals were protected from sudden death, and the epileptic phenotype was attenuated. Improvement of motor performance and interaction with the environment was observed. In contrast, hyperactivity persisted, and the impact on cognitive tests was variable (success in novel object recognition and failure in Morris water maze tests). These results provide proof of concept for gene supplementation in Dravet syndrome and indicate new directions for improvement.

4.
Neurobiol Dis ; 148: 105209, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271326

RESUMO

Dravet syndrome (Dravet) is a rare, severe childhood-onset epilepsy, caused by heterozygous de novo mutations in the SCN1A gene, encoding for the alpha subunit of the voltage-gated sodium channel, NaV1.1. The neuronal basis of Dravet is debated, with evidence favoring reduced function of inhibitory neurons, that might be transient, or enhanced activity of excitatory cells. Here, we utilized Dravet mice to trace developmental changes in the hippocampal CA1 circuit, examining the properties of CA1 horizontal stratum-oriens (SO) interneurons and pyramidal neurons, through the pre-epileptic, severe and stabilization stages of Dravet. Our data indicate that reduced function of SO interneurons persists from the pre-epileptic through the stabilization stages, with the greatest functional impairment observed during the severe stage. In contrast, opposing changes were detected in CA1 excitatory neurons, with a transient increase in their excitability during the pre-epileptic stage, followed by reduced excitability at the severe stage. Interestingly, alterations in the function of both inhibitory and excitatory neurons were more pronounced when the firing was evoked by synaptic stimulation, implying that loss of function of NaV1.1 may also affect somatodendritic functions. These results suggest a complex pathophysiological mechanism and indicate that the developmental trajectory of this disease is governed by reciprocal functional changes in both excitatory and inhibitory neurons.


Assuntos
Potenciais de Ação/fisiologia , Região CA1 Hipocampal/metabolismo , Epilepsias Mioclônicas/metabolismo , Interneurônios/metabolismo , Células Piramidais/metabolismo , Animais , Região CA1 Hipocampal/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/fisiopatologia , Interneurônios/fisiologia , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Neurônios , Células Piramidais/fisiologia , Convulsões/genética , Convulsões/metabolismo , Convulsões/fisiopatologia
5.
Epilepsia ; 61(10): 2289-2300, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32865826

RESUMO

OBJECTIVE: Dravet syndrome (Dravet) is a severe childhood epileptic encephalopathy. The disease begins with a febrile stage, characterized by febrile seizures with otherwise normal development. Progression to the worsening stage features recurrent intractable seizures and the presentation of additional nonepileptic comorbidities, including global developmental delay, hyperactivity, and motor deficits. Later in life, at the stabilization stage, seizure burden decreases, whereas Dravet-associated comorbidities persist. To date, it remains debated whether the nonepileptic comorbidities result from severe epilepsy or represent an independent phenotypic feature. METHODS: Dravet mice (DS) faithfully recapitulate many clinical aspects of Dravet. Using wild-type (WT) and DS at different ages, we monitored multiple behavioral features as well as background electroencephalogram (EEG) activity during the different stages of Dravet epilepsy. RESULTS: Behavioral tests of WT and DS demonstrated that some deficits manifest already at the pre-epileptic stage, prior to the onset of convulsive seizures. These include motor impairment and hyperactivity in the open field. Deficits in cognitive functions were detected at the onset of severe spontaneous seizures. Power spectral analysis of background EEG activity, measured through development, showed that DS exhibit normal background oscillations at the pre-epileptic stage, a marked reduction in total power during the onset of severe epilepsy, and a subsequent smaller reduction later in life. Importantly, low EEG power at the stage of severe frequent convulsive seizures correlated with increased risk for premature death. SIGNIFICANCE: Our data provide a comprehensive developmental trajectory of Dravet epilepsy and Dravet-associated comorbidities in mice, under controlled settings, demonstrating that the convulsive seizures and some nonepileptic comorbidities may be uncoupled. Moreover, we report the existence of an inverse correlation, on average, between the power of background EEG and the severity of epileptic phenotypes, suggesting that such measurements may potentially serve as a biomarker for Dravet severity.


Assuntos
Modelos Animais de Doenças , Epilepsias Mioclônicas/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.1 , Agitação Psicomotora/fisiopatologia , Convulsões/fisiopatologia , Animais , Comorbidade , Eletroencefalografia/métodos , Epilepsias Mioclônicas/genética , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Convulsões/genética
6.
Neuron ; 102(5): 1009-1024.e8, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31047779

RESUMO

Maintaining average activity within a set-point range constitutes a fundamental property of central neural circuits. However, whether and how activity set points are regulated remains unknown. Integrating genome-scale metabolic modeling and experimental study of neuronal homeostasis, we identified mitochondrial dihydroorotate dehydrogenase (DHODH) as a regulator of activity set points in hippocampal networks. The DHODH inhibitor teriflunomide stably suppressed mean firing rates via synaptic and intrinsic excitability mechanisms by modulating mitochondrial Ca2+ buffering and spare respiratory capacity. Bi-directional activity perturbations under DHODH blockade triggered firing rate compensation, while stabilizing firing to the lower level, indicating a change in the firing rate set point. In vivo, teriflunomide decreased CA3-CA1 synaptic transmission and CA1 mean firing rate and attenuated susceptibility to seizures, even in the intractable Dravet syndrome epilepsy model. Our results uncover mitochondria as a key regulator of activity set points, demonstrate the differential regulation of set points and compensatory mechanisms, and propose a new strategy to treat epilepsy.


Assuntos
Cálcio/metabolismo , Crotonatos/farmacologia , Epilepsias Mioclônicas/metabolismo , Hipocampo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Convulsões/metabolismo , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Toluidinas/farmacologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Di-Hidro-Orotato Desidrogenase , Modelos Animais de Doenças , Suscetibilidade a Doenças , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Homeostase , Hidroxibutiratos , Camundongos , Mitocôndrias/metabolismo , Nitrilas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Sinapses/metabolismo , Transmissão Sináptica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...